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The paper discusses free convective flows above a horizontal plate, both 
theoretically and on the basis of experiments which yield quantitative data. 
The theory is applicable to the semi-infinite plate and is extended to cover the 
complete range of Prandtl number values including Pr + 0 and Pr + 00. Experi- 
ments were carried out to demonstrate the existence of a laminar boundary 
layer above a horizontal plate at intermediate Grashof (respectively Rayleigh) 
numbers, and its extent along the plate. This layer breaks down into large-eddy 
instability some distance from the leading edge. The value of the critical Rayleigh 
number for this to occur, obtained experimentally using semi-focusing colour- 
Schlieren photography is in reasonable qualitative agreement with previously 
known data (Tritton 1963a,b). 

1. Introduction 
The present paper discusses the flow in natural convection over a surface which 

is nearly or exactly horizontal with respect to the direction of the vector gravity. 
The case considered theoretically is that of a flat plate with a single leading edge, 
the flow proceeding along the surface. For this particular configuration the larger 
component of the buoyancy forces acts in a direction which is almost normal to 
the boundary-that is, normal to the direction of the expected flow-and there- 
fore the fluid is driven indirectly. 

I n  this flow situation the visual evidence of early experimental investigations 
performed by Schmidt (1932) and Weise (1935) in air showed that boundary- 
layer flow could possibly be expected not too far downstream from the leading 
edge of the plate, provided the values of the Rayleigh number under which tests 
were performed were moderate to high. Earlier, Fishenden & Saunders (1930, 
pp. 95-96) had obtained some quantitative correlations on the heat transfer 
coefficient to be expected, while recently Sugawara & Michiyoshi (1955) and 
Michiyoshi (1964) attempted a theoretical analysis of the flow configuration, 
starting with flow around a heated infinitely long ellipsoidal cylinder of large 
eccentricity. 

If a plate with only a single leading edge is considered (the ‘semi-infinite’ 
plate), then the absence of a characteristic length would suggest the possibility 
of finding similarity solutions for this case. The existence of such solutions was 
first demonstrated by Stewartson (1958) for the isothermal plate immersed in 
fluid having a Prandtl number of about 0.7. Stewartson also showed that only 
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one of the two possible flows, that of a heated plate facing upwards (or a cooled one 
facing downwards) on the one hand, or a cooled plate facing upwards (or a heated 
plate facing downwards) on the other, would give rise to a ‘ boundary-layer ’ type 
of solution. Later Gill, Zeh & del-Casal(l965) extended Stewartson’s solution to 
another type of wall-temperature variation and to Pr = 1 and 10. Gill et al. 
(1965) and Rotem (1967) showed that the first of the two possible cases of flow 
was the only one for which boundary-layer solutions could be obtained. At first 
sight this seems to conflict with early photographs by Schmidt (1932), but this 
contradiction is only apparent: it can be shown that the flow below a heated 
plate facing downwards cannot be described by boundary-layer type equations. 

Ultimately, the laminar boundary-layer forming along a horizontal plate will 
terminate. Under experimental conditions it may either meet a similar layer 
proceeding from the opposite end of the plate, then turn through a right angle 
and feed a thermal plume (accompanied by a large-eddy convective pattern near 
its turning-point), as stipulated in the Stewartson theory. Or, if the experimental 
plate is sufficiently wide, then the gravitationally unstable layer will separate 
from the heated boundary and give rise to typically eddying convection well 
ahead of the axis of symmetry.t The phenomenon is only qualitatively akin to 
Rayleigh instability over an infinite heated boundary. It will occur under actual 
experimental conditions at Rayleigh numbers different from those calculated and 
tested for infinite or enclosed flat plates. The phenomenon of the onset of in- 
stability under these naturally convective situations has been extensively tested 
byTritton(1963a,b)andalso by Croft (1958,inadifferent context). Inthepresent 
work we shall describe the solution of the equations of momentum, continuity 
and energy for both a ‘power law’ variation of wall temperature (of which the 
isothermal plate is a particular case) in a more systematic way, with the prime 
aim of clarifying the bounds upon their validity as ‘ boundary-layer ’ solutions. 
The constant flux case will also be considered, we believe for the first time. In 
order not to lengthen the paper unduly, numerical results will be presented for 
the isothermal case only: these will be treated in sufficient detail to bring out all 
the physical phenomena of the flow. The lateral extent of the boundary layer will 
be examined in detail: this is possible only experimentally, and a suitable 
investigative technique developed is here described. 

When the reduced equations are examined it is found that for asymptotically 
large values of the Prandtl number (which is a parameter in the equations) the 
system will become singular, while for vanishingly small values of the Prandtl 
number uncoupling of the equations of momentum and energy would seem to 
occur. Both these cases have, however, important applications in practice : 
(a) In electrochemical work there is some interest in the knowledge of free con- 
vective mass transfer. It has been shown (see Levich 1962) that in some cases of 
fast electrochemical mass transfer the process is diffusion controlled (also Rotem 
& Mason 1964). The equations describing the mass transfer process at  strong 

t A further type of instability, due to the retarded boundary-layer type of flow near 
a solid boundary, may occur as ‘classical’ boundary-layer separation on a flat plate. 
However, this would usually take place after the full course of flow on the plate has already 
been completed. 
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dilution of the active species are identical to those of heat transfer, the Schmidt 
number replacing the Prandtl number, with Sc of the order of 1800. ( b )  For liquid 
metals Pr is very low: these fluids are of interest in nuclear reactor theory where 
cooling has, upon occasion, to be performed by free convection alone. 

In  the present paper solutions for these two extreme cases will be obtained, 
again limiting the numerical results to the isothermal plate. These will yield 
‘ universal ’ solutions in the sense that the solutions themselves do not depend 
upon the value of Pr, which only appears as a multiplicative parameter of fixed 
exponent irrespective of its value. The functions may therefore be used whatever 
the exact value of the Prandtl number, provided Pr is ‘sufficiently large’ or 
‘sufficiently small’. These solutions have, to our knowledge, not been examined 
previously. 

As already mentioned above, the lateral extent of the boundary layer cannot 
be determined theoretically. Therefore, a further part of the paper will describe 
the experimental work performed on plates of various sizes in order to attempt 
to determine the point of onset of eddying instability, which terminates the 
laminar boundary layer. In  setting up these experiments careful attention was 
paid to prior work, cf. Tritton (1963a) on inclined plates. For ease of observation 
and quantitative evaluation a comparatively recent technique of semi-focusing 
colour-Schlieren photography was used, cf. Rotem, Hauptmann & Claassen 
(1968). 

2. Analysis 
The analysis considers a plate with one leading edge (a ‘semi-infinite’ plate) 

in an infinite expanse of fluid. It has been shown by Ostrach as long ago as 1953 
for vertical plates in free convection that in all cases arising in practice the 
Boussinesq approximations may be adopted; that is, the density of the fluid may 
be assumed to remain constant, except in the buoyancy terms. Here it is also 
assumed that the other properties of the fluid do not vary appreciably. The 
equations of momentum, continuity and energy then become for this situation of 
two-dimensional steady flow, 

au au a r  
ay ax u ~ + v -  = - - -+V%~Cr6tga,  

av av an 
u-+v- = - - + V 2 v + G r B ,  ax ay ay 

au av -+- = 0, 
ax ay 

ae ae 1 
u-+v- = - p e .  
ax ay Pr 

(3) 

(4) 

x and y are Cartesian co-ordinates with origin at the leading edge of the plate, 
and the y-axis is pointing into the surrounding fluid. z and y are rendered dimen- 
sionless through use of a reference length L which renders the largest value of x 



176 Z. Rotem and L. Claassen 

of order unity. u and v are the components of velocity in the directions x and y 
respectively, rendered dimensionless with reference velocity v/L. The dimension- 
less pressure 7~ is given by 

where p is the (static) pressure, g is the gravitational acceleration and a is the 
angle of inclination to the horizontal, positive counterclockwise, assumed very 
small. The subscript 03 refers to points very far removed from the boundary: 
pm is the pressure in the plane y = 0, as x + - 03. The dimensionless temperature 
will be given by, 

6 = (T - Tm)/ATref. (6) 

ATref is some suitable reference temperature-difference which renders the largest 
value of 8 always positive in algebraical sign and of order unity. For the case of an 
isothermal boundary one would naturally choose ATref = (T,,, - T,). The para- 
meter Gr, the Grashof number appropriate to  the system is defined as follows : 

Gr = (g/3L31ATreil cosa)/v2. (7) 

With the direction of the axes as indicated it should be noted that for a heated 
plate facing upwards the gravitational forces act in the negative y direction, and 
the algebraical sign associated with the buoyancy term in equations (1) and (2) 
is thus positive. The sign is reversed when a heated plate facing downwards is 
considered. 

The boundary conditions corresponding to  (1)-(4) are given by, 

Here C is a given positive constant and n a given exponent. 
The analysis will hold, as we shall show, provided a is very small and the charac- 

teristic value of the Grashof number (or the Rayleigh number) is sufficiently 
large. Introduce now asymptotically 'modified' variables (also known as 
' stretched variables '), 

f j  = yGd, 42 = uGr-?, 0 = vG&, 6 = nGrB. (10) 

The introduction of these variables is equivalent to the application of the 
boundary-layer approximations. The equations become as follows, 

aa 88 -+- = 0, 
ax ag 
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As Gr becomes very large, the system of equations above will yield an 'inner ' 
solution valid near the boundary surface. In  the present case the 'outer' solution 
reduces simply to the statement, 

u = o ,  8 = 0 ,  

so that the boundary conditions (9) may be taken to apply at  the outer edge of 
the 'inner' solution. We shall now further introduce a stream function, as usual, 

and a similarity transformation as follows, 

Finally, a similarity variable will be defined thus, 

7 = 9qx-s. 

Inserting (1 1)-( 13) into (1 a)-(4a) we obtain compatibility equations for the 
exponents m, q, p and s. These conditions state (i) the requirement for terms of 
order Gr-3 not to increase with x, and (ii) for all other terms to become functions 
of the similarity variable 7 only. One fmds that one exponent may be chosen 
arbitrarily, and for convenience we put q = 1. Therefore, 

rn = Q+& p = g+&n, s = E-+n. (14) 

The value of the exponent n is imposed by the boundary conditions. For the 
transformation to be valid, one must have 

n >  - 3 .  

The equations (la)-(4a) now reduce to the following: 

5F"+ ( 3 +  n)E%"- (1 + 2n) ( F f ) 2  = 2(1+ Zn) G -  (2-n)  7G' 

T 0 I Gr&(n+3)/5tgal- 01 (79-&-%3+%) I, (16) 

(17)  

(18) 

Note that the last term but one on the right-hand side of (16) remains small only 
on condition that 

This limiting condition upon the permissible inclination of the boundary surface 
to the horizontal is believed to be rather more appropriate than the one previously 
proposed by Stewartson (1958). The boundary conditions subject to which these 
equations have to be solved are given by, 

GI = f H + o I ~ r - * ~ - ~ ( 3 + q ,  

H" + QPr(3 + n) FH' - n P r  F'H = OIGr-*x-%(3+n)l. 

a: < c ~ l t g - ~ ( G ~ - * z - ~ ~ + ~ ) ) l .  (19) 

12 Fluid Mech. 39 
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It has been shown by Stewartson that only one of the possible two cases of 
direction of buoyancy forces gives rise to a boundary-layer type of solution. 
Gill et al. have shown that it is the oase of the heated plate facing upwards, or 
equivalently of the cooled plate facing downwards, which is thus tractable. In 
the following the algebraical signs appropriate for that case only will be retained. 

For the case of the isothermalplate we have n = 0;  and the equations simplify to, 

5F"+3FPr'- (F')' = ~ ( G - v G ' ) ,  (21) 

H = G', ( 2 2 )  

(23) HIr + QPr FH' = 0, 

with boundary conditions (20). The local Nusselt number is obtained from, 

Then the average value of the Nusselt number becomes 

GraH'(0). 
5 

3( 1 + 2n) 

- 
N u = -  

Considering next the case of constant, imposed $ux 

m = 2  3 ,  p = $ ,  s = l  3' 
we obtain instead of (la),  

The relevant equations for the functions P, G and H 

at the bounding surface 

(26)  

may be obtained by in- 
serting n = $ into (16)-(19). A suitable choice for the reference temperature 
difference is given by, L &Gr-* 

K H' (0)  ' ATTer = -- - 

where 0 is the given flux per unit area. 
Equations (20)-(23) cannot be solved in closed form and have therefore to be 

integrated numerically. The process of numerical integration of the three 
simultaneous equations is rather tedious and unstable, and details are given 
elsewhere (Rotem & Claassen 1969). For brevity the numerical investigation will 
be performed for the isothermal case only. The results of the numerical analysis 
are summarized in table 1, which gives the most important data of P(co), F"(O), 
G(0) and H'(0) for various values of the Prandtl number, while figures 1-3 show 
the variation of F'(v),  G(7)  and H(7).  The first of these functions is a measure of 
the dimensionless velocity, the second of the dimensionless pressure, while the 
third characterizes the temperature distribution. 

The theory has been extended to rotationally symmetrical flow but this will not 
be elaborated upon in the present communication (see Rotem & Claassen 1969). 

3. Asymptotic cases 
Examination of (1 6)-( 18) shows that as Pr increases without limit, (18) seems 

to become singular, whereas for a vanishing Pr the equations seem to be un- 
coupled. We shall show in the following that asymptotic solutions may be 
obtained for both these cases nevertheless. 
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FIGURE 3. Temperature function. 

Pr 
0.10 
0.30 
0.50 
0.72 
1.00 
2.00 
5-00 

10.00 

F ( a )  
7.04147 
3.77414 
2.84050 
2.33450 
1.97860 
1.43923 
1.00826 
0.79423 

F“(0) 

2.03014 
1.36178 
1-12619 
0.97998 
0.86611 
0.66616 
0.47366 
0.36638 

TABLE 1 

0) 
- 3.3648 
- 2.2939 
- 1.9421 
- 1.7290 
- 1.5658 
- 1.2832 
- 1.0134 
- 0.85915 

H’(0) 
- 0.19681 
- 0.27868 
- 0.32396 
- 0.35909 
- 0.39204 
- 0.46901 
- 0’58816 
- 0.69069 

(i) Pr $ 1 

The thermal boundary layer, within which the conductive and convective terms 
are to be of equal order of magnitude, will be much narrower than the momen- 
tum boundary layer. We shall therefore introduce asymptotically ‘stretched ’ 
variables such that in the new system the width of the thermal layer will be 
increased to become of order unity. We will then consider the solution for this 
inner ’ region, within which virtually the complete temperature drop takes 

place. The velocity at  the outer edge of this ‘inner’ layer is not reduced to zero, 
but should match with the solution at  the inner edge of an ‘outer’ region com- 
prising the rest of the momentum boundary layer. 

6 -  
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For the ‘inner’ solution put 

g = @Pr% = y Ra%, 

.ii = WrQ, V” = W r t ,  f i  = iiPr+, 

where Ra is the Rayleigh number. Thereupon (1 a)-(4a) reduce to, 

aiz afi -+-= 0, 
ax aij 

Introducing the same similarity transformation as before, with the exception that 
the new superscripted variables are read for the old, one arrives at a simplified 
system of equations. For convenience the derivation for the isothermal plate is 
here presented in detail. We have 

5pr-2(0,-fl0;) = OIPr-l[ +01(Rux3)-fI -Ol(Rax3)*tgal, (33) 

R1-8; = O~(Ra23)-q ,  (34) 

R;+#P,& = O I ( R U X ~ ) - ~ ~ .  (35) 

The small angle of inclination to the horizontal is now limited by the following 
condition: 

(36) 

For sufficiently large values of Pr and x3Ra the right-hand terms in the equations 
above will become negligibly small, and we may integrate these equations 
numerically to obtain a first-order solution for the ‘inner’ region. Thus the 
solution (as is usual with boundary-layer solutions) will not describe the near 
vicinity of the leading edge, where z is very small. The boundary conditions are 

u = 0 I tg-l(Ra ~ * ) d  I. 

(37) 1 fjl = 0, Pl = P;  = 0, 8, = 0; = 1, 

r”l+ CQ, P; = 0, 8, = 8, = 0. 

The functions so obtained are independent of the value of the Prandtl number, 
and as such are ‘universal’. However, as with all such asymptotic solutions Pr 
raised to a power which is an integer multiple of + remains a factor by which all 
values obtained have to be multiplied. 

Figures 4 and 5 give these new functions for various large values of Pr, when 
replotted in asymptotic co-ordinates, as i?, and R, vs. fl. 

It is of course the ‘inner’ region which will entirely determine the heat-transfer 
characteristics of the flow, while the ‘outer’ region ensures the decay of the 
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4. Pressure function in terms of asymptotic co-ordinates, Pr -+a. 

FIGURE 5. Temperature function in terms of asymptotic co-ordinates, Pr + 03. 



Natural convection above a horizontal surface 183 

velocity to zero. The value of the local Nusselt number is obtained from the 
inner solution as follows: 

NU = -x-?RdB;(O); B;(O) = -0-4601 (38) 

and the value of the mean of the Nusselt number over the range x = 0 to x = 1 
is 5 of this value. 

The relation (38) is valid for large values of the Prandtl number only. On the 
other hand, the following considerations apply to the ‘outer’ region, which 
comprises the bulk of the momentum boundary layer. In this region both the 
convective and the viscous terms in the equation of motion have to be retained, 
while the temperature has already dropped exponentially rapidly to its asymp- 
totic value (i.e. to zero) in the inner region. Also, the velocity at  the inner edge 
of this outer layer must be of order unity in outer, ‘stretched’ variables. These 

iil 
0.00 
0.51 
0.99 
1-50 
2-01 
2.49 
3.00 
3.51 
3-99 
4.50 
5.01 

PI 
0.0 
0.1161 
0.3984 
0.8244 
1.3314 
1.8498 
2.4224 
3.0047 
3.5561 
4.1432 
4.7305 

2; 
0.0 
0.4332 
0.7252 
0.9289 
1.0475 
1.1062 
1,1352 
1.1465 
1.1503 
1.1515 
1.1518 

N 

Gl 
- 1.2691 
- 0.8187 
- 0.5022 
- 0.2714 
- 0.1309 
- 0.0588 
- 0.0220 
- 0.0071 
- 0.0022 
- 0.0005 
- 0~0001 

&I 

1~0000 
0.7664 
0-5548 
0.3564 
0.2028 
0.1053 
0.0455 
0.0168 
0.0057 
0.0015 
0.0003 

fi; 
- 0.4602 
- 0.4541 
- 0.4221 
- 0.3496 
- 0.2506 
- 0.1578 
- 0,0817 
- 0.0354 
- 0,0137 
- 0.0042 
- 0*0011 

TABLE 2a. Universal functions for Pr + co 

$2 P; N 

72 
0.00 0.00 1.1522 
0.50 0.4902 0.8207 
1.00 0-8334 0.5647 
1.50 1.0666 0.3787 
2.00 1-2216 0-2495 
2-50 1-3231 0.1624 
3-00 1.3889 0.1049 
3.50 1.4313 0.0674 
4.00 1.4585 0.0431 
4.50 1.4759 0.0276 
5.00 1.4870 0.0176 
6-00 1.4986 0.0071 

0 throughout the ‘outer’ region. 

TABLE 2b.t Universal functions for Pr -+ co 

t For convenience the normalizing factor d(Pi(o3)), equation (39), has not been used 
for the calculation of this table. 
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requirements are fulfilled by the following transformation, 

2. Rotem and L. Claassen 

F2 = P&[P;(CO)]-BP, +j2 = Pr--” 
(39) 

10[R(4l*S> } 
$2 = m 2 ) ,  

where F and 7 are the variables defined in (12) and (13). The equations to be 
solved become, 

while the boundary conditions become, 

5P; + 3P2’,%; - (Jy = 0, IT2 = 0, 

I q O )  = 0) &O) = 1, PL(00) = 0. (41) 

(40) 

Values of the ‘universal’ functions for the outer solutions are given in table 2b. 

(ii) Pr < 1 

Assuming that Pr becomes vanishingly small would seem to lead to the un- 
coupling of equations (21) and (23). NOW, the thermal boundary layer will, in the 
case of very small Pr ,  be much wider than the momentum boundary layer. 
Consequently, the influence of the viscous terms in the momentum equation 
on the convective process should become negligible at  a small distance away 
from the boundary, while the inertia terms should remain of the same order as 
the buoyancy terms. Therefore, it is the outer region which primarily determines 
the convective process, while the inner region ensures the disappearance of the 
velocity at the boundary. For the outer region we introduce transformations as 

N -  .% 

The equations for the new functions p2,  c”, and E2 then reduce to 
N N  

3p2& - ($’;)2+ 2(f28; - a2) = 01 (Pr  Ra)* x-* tan a1 + 01 Pri  (Gr x3)-%I , (43) 
N N  

N f12-8L N N  = O I ( G ~ X ~ ) - Q P ~ - % I ,  (44) 

(45) fki + aF2 fl; = o I ( ~ r  Ra x ~ ) - Q  I. 
It is seen that there is in reality no uncoupling of the equations, but that the 
condition P’(0) = 0 is no longer fulfilled by the solution for the outer region. It 
will be a requirement upon the solution for the inner region to satisfy the non-slip 
condition at  the solid boundary. 

When proceeding with the numerical integration of (43)-(45)) a difficulty is 
caused by the apparent sjngularity of (43) at the origin. This problem is circum- 
vented by assigning to P2 a very small but non-zero value at  that point, or by 
starting the integration from the far end of the region. 

Solutions of the equations for the ‘universal’ functions involved are given in 
table 3a. In  figures 6 and 7, the values of G and H as previously determined for 
various small values of the Prandtl number are replotted in asymptotic co- 
ordinates for the ‘ outer ’ solution. The Nusselt number for this case is given by, 

N 

N u  = -x- iGdPr%gi(O),  
N 

fiL(0) = -0.5770. 

The mean value of the Nusselt number will again be Q of the above. 
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It remains to obtain the first term of a suitable solution for the inner region. 
Considerations similar to those already discussed apply. The transformation is 
obtained as follows: 

where P and 7 are as previously defined. The equations are 
M N N  N 

5i9,+3P1&(Pl)2 = - 1 , 1  
N 

w N &=:, I 
E(0)  = 0, Pi(0) = 0, P;(m) = 1. 

Values of the 'universal' functions for the inner solution are given in table 3b .  

N N 

12 
0.002 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4-50 
5.00 
5.50 
6.00 

E2 
0*00008 
0.6026 
1.0054 
1.2773 
1.4590 
1.5788 
1.6567 
1,7069 
1.7388 
1.7590 
1.7716 
1.7793 
1.7840 

N 

F; 
1.5723 
0.9731 
0.6585 
0.4424 
0.2935 
0.1921 
0.1243 
0.0795 
0.0504 
0-0316 
0-0196 
0.0120 
0.0072 

N 

z 2  

- 1.2456 
- 0.8163 
- 0.5162 
- 0.3180 
- 0,1922 
-0.1148 
- 0.0679 
- 0.0399 
- 0.0233 
- 0.0136 
- 0.0079 
- 0.0045 
- 0.0026 

z 

g2 

1.0000 
0.7216 
0.4881 
0.3148 
0-1963 
0.1196 
0.0717 
0.0426 
0.0251 
0.0148 
0.0086 
0.0050 
0.0029 

TABLE 3a. Universal functions for Pr -+ 0 

N 

E; 
- 0.5170 
- 0.5220 
- 0.4075 
- 0.2881 
- 0.1906 
- 0.1206 
- 0.0741 
- 0.0447 
- 0.0267 
- 0.0158 
- 0.0093 
- 0.0054 
- 0.0032 

N N 

11 
0.00 
0-50 
1.00 
1.50 
2.00 
240 
3.00 
3.50 
4.00 
4.50 
5.00 
6-00 

- 
I", 

0.00 
0-1427 
0.5285 
1.0918 
1.7698 
2.3597 
3,2817 
4.0633 
4.8484 
5.6344 
6-4205 
7.9927 

.- 
F; 

0.00 
0.5501 
0.9711 
1.2609 
1.4336 
1.5081 
1.5561 
1.5682 
1-5714 
1.5722 
1-5723 
1.5723 

N 

1.0 throughout the 'inner' region. 

TABLE 3 b.t Universal functions for Pr + 0 
N 

t For convenience the normalizing factor d(?;(O)), equation (47), has not been used 
for the calculation of this table. 



186 

2.0 

Z .  Rotem and L. C h s e n  

N N 

7 2  

FIGURE 6. Pressure function in terms of aaymptotic 
co-ordinates, Pr -f 0. 

2.0 5.0 
N N 

7a 
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4. Experimental apparatus and experiments 
The purpose of the experiments was to confirm the theoretical predictions of 

Q 2, and if possible to obtain the lateral extent of the boundary layer, about which 
the theory cannot tell us very much. For this investigation three rectangular 
plates, 6 x 12in., 12in. square and 21in. square, and a circular plate of 6in. 
diameter were used. For the smaller size of rectangular plate both constant-flux 
surfaces (formed of Pyrex glass, coated thinly with zinc oxide) and constant- 
temperature plates, formed of # - $ in. polished aluminium and/or copper were 
used. The plates were heavily insulated on their underside to reduce possible heat 
leakage. Four copper-constantan thermocouples were embedded in each of 
the metal plates to check upon uniformity of temperature distribution and were 
calibrated and measured with great accuracy. Testing was performed in air, with 
extensive precautions in levelling the plates and rendering them vibration proof. 

As the main aim of the experiments was the demonstration of the existence 
of a laminar boundary layer on the upper side of a heated plate and the 
measurement of its extent, no detailed heat transfer measurements were 
performed. Great precautions were taken to avoid the effects of spurious turbu- 
lence from the surroundings upon boundary-layer extent, through allowance 
for very long settling periods in a closed room with quiescent air. Both sharp and 
rounded leading edges were used, the former usually giving rise to a fairly large, 
reattaching separation ‘bubble ’. 

In  order to gain insight into the boundary-layer evolution, a semi-focusing 
colour-Schlieren apparatus was developed of 8in. field of view. This type of 
apparatus blurs out all but the central few inches of the plate viewed while giving 
very sensitive and vivid photographs of that region of the plate over which the 
flow most closely approaches the two-dimensional situation. The colour fringes 
enable limited quantitative evaluation of the temperature profiles involved. The 
details of this evaluation forms part of a separate communication, Rotem et ul. 
(1969). Suffice it to say that the number of colour fringes visible, k, is related to 
the temperature ratio TIT, by, 

where 8 is a constant which depends only upon the properties of the fluid and of 
the optical instrument. Very great precautions were taken in levelling the 8 in. 
diameter Schlieren beam, with the aid of a small laser and a theodolite, and in 
producing a perfectly regular slit and colour grating. 

In  total, about 70 still frames were taken of the rectangular plates and 50 of 
circular disks. Figure 11, plates 1-4, are examples of the result obtained. The 
range of Rayleigh numbers covered was 0-40,000, at the single value of the 
Prandtl number for ambient air. The photographs cover between one-third and 
two-thirds of the whole width of the test surfaces. Pictures were only taken during 
‘ quiescent ’ periods: this will be discussed in the next paragraph. 
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5. Results and discussion 
In  the first part of this paper the flow near the leading edge of a heated hori- 

zontal plate facing upwards is discussed. Previous solutions are reinterpreted, 
bounds upon the validity of the analysis are obtained, and some new solutions 
are derived. In  the second part consideration is given to the experimental deter- 
mination of the normal and the lateral extents of the laminar layers analyzed: 
this will serve as a check upon the applicability of the theory of $2 and supplement 
this by information unobtainable analytically. 
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FIGURE 8. Grashof number at onset of cellulm oonvection. 
(a) 21 in. isothermal plate. (b) 12 in. isothermal plate. 

The photographs taken with the semi-focusing colour-Schlieren apparatus 
show the definite existence of a boundary layer on the upper side of heated 
horizontal plates held in air, when both these and the Schlieren beam have been 
very carefully levelled. Its thickness checks approximately with that expected 
from theory, except near the leading edge and near the centre of the plate (where 
unstable eddying occurred). Early investigations by Schmidt (1932) and Weise 
(1935) used approximately square plates of finite width, heated on both their 
sides to an approximately constant temperature. Their visual examination with 
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a non-focusing Schlieren system revealed what appeared to be a boundary-layer- 
like flow on the underside of the plate, and an eddying quasi-cellular unstable flow 
pattern on the upper side, starting almost at the leading edge. We believe the 
explanation of this earlier result lies in the fact of the heating of both sides of the 
plate: the upper side was thus in the lee of a very strong ‘thermal jet’ spilling 
over the sides of their plates, and upsetting the upper boundary layer. Effects on 
the underside of a heated plate cannot be described by boundary-layer-type 
equations. Thus they are not covered in the present investigation and will form 
part of a separate communication (Rotem & Wu 1969). Neither are the effects of 
the disturbed flow at the inception of the plume (where flow ‘polarization ’ takes 
place) examined in the present paper. 
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FIGURE 9. Critical Rayleigh number. (a) 21 in. isothermal plate. 
( 6 )  12 in. isothermal plate. 

The lateral extent of the boundary layer was assumed by Stewartson (1958) 
to be the half-width of the plate. At that point the flow would turn, upon meeting 
the stream from the opposite plate edge, forming a thermal plume rising above 
the plate. This is indeed a possible mode of flow for cases of sufficiently small 
values of the characteristic Grashof number, and was observed by ourselves 
experimentally. For larger values of Gr, however, the thickening boundary layer 
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must attain a point of instability well before reaching the vicinity of the axis of 
symmetry. Two possible modes of instability may be envisaged: separation of 
a thick, slow boundary layer due to the insufficiency of the pressure gradient to 
drive the flow; or gravitational instability, arising out of a (non-linear) compound- 
ing of a pressure gradient and a destabilizing buoyancy force, at  right angles 
to each other. It is easy to show by reference to the values of the critical Grashof 
respectively Rayleigh numbers obtained, that here the second mode of instability 
occurs before the first has been able to develop. In  this case, the width of the 
zone over which the laminar boundary-layer exists should decrease with an in- 
crease in Ra characteristic, as pointed out by one of the reviewers of this paper, 
and this effect is indeed observed experimentally, and summarized in figures 8 and 
9. Expressed differently, the critical Rayleigh number, based upon the boundary- 
layer thickness, should tend to some constant value. This constant value may, 
however, be influenced by the geometrical characteristics of the plate, as these 
influence the strength of the total updraught. The value of the critical Ra, 
cannot be obtained from the theory evolved in this paper. Tritton (1963 b )  has 
done pioneering work upon the onset of instability on inclined plates, and finds 
a value of Grs = 1100-1300 for the start of fully established eddying convection 
in air on plates inclined as much as 40" to the horizontal. Our own tests for fully 
developed cellular convection performed on horizontal plates, that is at 0" of 
inclination, reveal an expected lower value of Gri of about 100 for the smaller 
isothermal plate, and Gr)  about 125 for the larger. Therefore, we may conclude 
that inclination of the plate (giving rise to a flow not at all covered by the theory 
of the present paper) favours stability. 

In  the present work measurements were only taken during the long quiescent 
intervals (up to a few minutes) between spurious eruptions into eddying motion. 
As to the first appearance of occasional fluctuations, this was found to accord with 
the value of Gr) = 0 as predicted by Tritton. No attempt was made to correlate 
the random time distribution of these eruptions. It is therefore seen that in the 
horizontal configuration the flow is considerably less stable than in flow over 
inclined plates. Croft's (1958) work, undertaken on different premises, does not 
indicate values of Gr, critical or Ra, critical, but he showed that instability did 
arise in the near vicinity of the heated finite plate, placed horizontally. 

The values of Ru, critical found in the present study for fully established transi- 
tion to eddying convection, 24,000 for the smaller isothermal plate and about 
30,000 for the larger, are considerably higher than the value expected for the 
inJinitely wide plate. This is to be expected, in view of the probable stabilizing 
effect which the lateral flow feeding the plume has upon the initial formation 
of the laminar boundary layer. The increased scatter obtained with the larger 
plate (figures 8, 9) cannot be ascribed to the effect of spurious gross-turbulence 
triggering from the surroundings, as quite long intermittency periods were 
observed, and must at the present time stand unexplained. 

This research was supported from B grant by the Canada National Research 
Council, to which our sincere appreciation is expressed. Thanks are due to Dr D. 
Tritton for valuable comments on an earlier version of the paper. 
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Appendix. Analysis of the comparison of the theory and the experi- 
mental results 

For air, Pr FS 0.72, the thickness of the thermal boundary layer is obtained, 
on the basis of 2 yo approximation to the ambient temperature, a t  about 7 = 5.2. 
Also, from the first of relations (lo), from (13) and the lasL of relations (14) with 
n = 0 inserted we obtain 

Here the subscript 1 signifies that the variables x1 and y1 are dimensional. From 
(A 1) one deduces, with /? = l/Tm, 

(A 2) 
2 

~r~~ = ~31y,=61 arglj 
whence Grsl maximum M 3.2 x 104 for the plate 12in. square. It will now be 
assumed that a direct relationship between the refractive index n and the 

Yl (in.) 

FIGUFLE 10. Colour fringes observable in Schlieren photographs as function of 
temperature difference. Pr = 0.72, T, = 70 O F .  
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On the other hand, 

where a, is the width of a single colour band, L, the length of the Schlieren path 
and f the focal length of the Schlieren head. It remains to substitute for L,, and 
insert (A4) into (A3). This yields equation (50). 

Figure 10 shows the relationship between fringe number k and temperature 
ratio found (Claassen 1968). The measured maximum stable boundary-layer 
thickness from the colour plate, AT reference 70 OF, was about 0.625 in. This 

Gr, = 3.2 x lo4, yields 

in surprisingly good agreement with the theoretically calculated value. 
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FIGURE 11. Colour Schlieren photographs of the flow of air 
over horizontal heated surfaces. 

FIGURE 11 (a). Isothermal plate, 12 x 12 in. AT = 30 O F ,  T ,  = 71 OF. 
FIGURE l l ( 6 ) .  Isothermal plate, 12 x 12 in. A T  = 56.5 O F ,  T ,  = 71.5 O F .  

Plate 1 

ROTEM AND CLAASSEN (Pacing p .  192) 
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FIGURE 11 (c). Isotlierrnnl plate, 12 x 12 in. AT' = 81 O F ,  T, = 71.5 "F. 
FIGURE l l (d) .  Isothermal platme, 12 x 12 in. AT = 117.5 OF, T, = 71.5 O F .  

ROTEM A N D  CLAASSEN 
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FIGURE l l ( e ) .  Isot,hermal plate, 21 x 21 in. AT = 23.5 "F, T, = 71 O F .  

FIGURE 11 (f). Isothermal plate, 21 x 21 in. AT = 39 "F, T, = 71 O F .  

ROTEM AND CLAASSEN 
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FIGURE l l ( g ) .  Isothermal plate, 21 x 21 in. AT = 43.5 O F ,  T ,  = 7 1  O F .  

FIGURE l l ( h ) .  Isothermal plate, 21 x 21 in. AT = 50.5 O F ,  T m  = 71 O F .  

Plate 4 




